Аннотация к рабочей программе по физике в 8 классе

Рабочая программа по физике для 8 класса разработана в соответствии: с авторской программой основного общего образования по физике для 7-9 классов (Н.В. Филонович, Е.М. Гутник, М., «Дрофа», 2012 г.);

• Основными целями изучения курса физики в 8 классе являются:

- *освоение знаний* о тепловых, электрических, магнитных и световых явлениях, электромагнитных волнах; величинах, характеризующих эти явления; законах, которым они подчиняются; методах научного познания природы и формирование на этой основе представлений о физической картине мира;
- *овладение умениями* проводить наблюдения природных явлений, описывать и обобщать результаты наблюдений, использовать простые измерительные приборы для изучения физических явлений; представлять результаты наблюдений или измерений с помощью таблиц, графиков и выявлять на этой основе эмпирические зависимости;
- применять полученные знания для объяснения разнообразных природных явлений и процессов, принципов действия важнейших технических устройств, для решения физических задач;
- *развитие* познавательных интересов, интеллектуальных и творческих способностей, самостоятельности в приобретении новых знаний при решении физических задач и выполнении экспериментальных исследований с использованием информационных технологий;
- воспитание убежденности в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважения к творцам науки и техники; отношения к физике как к элементу общечеловеческой культуры;
- применение полученных знаний и умений для решения практических задач повседневной жизни, для обеспечения безопасности своей жизни, рационального природопользования и охраны окружающей среды.

Основными задачами изучения курса физики в 8 классе являются:

- •развитие мышления учащихся, формирование умений самостоятельно приобретать и применять знания, наблюдать и объяснять физические явления;
- •овладение школьниками знаниями о широких возможностях применения физических законов в практической деятельности человека с целью решения экологических проблем.

В 8 классе предусмотрено 68 учебных часов из расчета 2 учебных часа в неделю. Содержание курса физики основной школы, являясь базовым звеном в системе непрерывного естественнонаучного образования, служит основой для последующей уровневой и профильной дифференциации.

В результате освоения программы

выпускник 8 класса научится использовать термины: физическое явление, физический закон, вещество, взаимодействие, электрическое поле, магнитное поле.

Выпускник получит возможность:

- понимать смысл физических величин: путь, скорость, масса, плотность, сила, давление, работа, мощность, кинетическая энергия, потенциальная энергия, коэффициент полезного действия, внутренняя энергия, температура, количество теплоты, удельная теплоемкость, влажность воздуха, электрический заряд, сила электрического тока, электрическое напряжение, электрическое сопротивление, работа и мощность электрического тока, фокусное расстояние линзы
- понимать смысл физических законов: Паскаля, Архимеда, сохранения механической энергии, сохранения энергии в тепловых процессах, сохранения электрического заряда, Ома для участка электрической цепи, Джоуля—Ленца, прямолинейного распространения света, отражения света;
- описывать и объяснять физические явления: равномерное прямолинейное движение, передачу давления жидкостями и газами, плавание тел, диффузию, теплопроводность, конвекцию, излучение, испарение, конденсацию, кипение, плавление, кристаллизацию, электризацию тел, взаимодействие электрических зарядов, взаимодействие магнитов, действие магнитного поля на проводник с током, тепловое действие тока, отражение, преломление и;
- использовать физические приборы и измерительные инструменты для измерения физических величин: расстояния, промежутка времени, массы, силы, давления, температуры, влажности воздуха, силы тока, напряжения, электрического сопротивления, работы и мощности электрического тока
- представлять результаты измерений с помощью таблиц, графиков и выявлять на этой основе эмпирические зависимости: пути от времени, силы упругости от удлинения пружины, силы

трения от силы нормального давления, температуры остывающего тела от времени, силы тока от напряжения на участке цепи, угла отражения от угла падения света, угла преломления от угла падения света

- выражать результаты измерений и расчетов в единицах Международной системы
- приводить примеры практического использования физических знаний о механических, тепловых, электромагнитных
- решать задачи на применение изученных физических законов
- осуществлять самостоятельный поиск информации естественно-научного содержания с использованием различных источников (учебных текстов, справочных и научно-популярных изданий, компьютерных баз данных, ресурсов Интернета), ее обработку и представление в разных формах (словесно, с помощью графиков, математических символов, рисунков и структурных схем
- познакомиться с примерами использования базовых знаний и навыков в практической деятельности и повседневной жизни для обеспечения безопасности в процессе использования транспортных средств, электробытовых приборов, электронной техники; контроля за исправностью электропроводки, водопровода, сантехники и газовых приборов в квартире; рационального применения простых механизмов.

Рабочая программа конкретизирует содержание предметных тем образовательного стандарта, дает распределение учебных часов по разделам курса, последовательность изучения разделов физики с учетом межпредметных и внутрипредметных связей, логики учебного процесса, возрастных особенностей учащихся, определяет минимальный набор демонстрационных опытов, лабораторных работ, календарнотематическое планирование курса.

Курс характеризуется повышением теоретического уровня обучения, постепенным усилением роли теоретических обобщений и дедуктивных заключений. Прикладная направленность курса обеспечивается систематическим обращением к примерам, раскрывающим возможности применения физики к изучению действительности и решению практических задач.

При обучении учащихся курсу физики наряду с традиционными методами обучения используются и продуктивные методы, технологии развивающего обучения: проблемное обучение, технология использования опорных конспектов, схемных и знаковых моделей, игровые технологии, дифференцированное и индивидуальное обучение, информационно- коммуникационные технологии (выполнение виртуальных лабораторных работ) и др. Увеличивается доля самостоятельной работы.

При обучении курсу физики 8 класса используются формы контроля знаний и умений учеников:

- физический диктант;
- ***** тестовое задание;
- кратковременная самостоятельная работа;
- ❖ письменная контрольная работа;
- лабораторная работа;
- ❖ устный зачет по изученной теме;
- ❖ работа в парах, группах сменного состава»;
- ❖ самостоятельное оценивание учащихся»;
- ❖ защита проектов.

Виды контроля: текущий, периодический (после изучения раздела), итоговый (по окончании четверти, года).

Формы контроля: индивидуальный, групповой, фронтальный.

При реализации учебной программы используются элементы технологий:

- личностно-ориентированного обучения;
- развивающего обучения;
- объяснительно-иллюстративного обучения;
- формирование учебной деятельности школьников;
- проектной деятельности;
- дифференцированного обучения;
- учебно-игровой деятельности;
- технологии проблемного подхода;
- традиционные технологии, такие как технологии формирования приемов учебной работы, изложения виде правил, алгоритмов, образцов, планов описаний и характеристики объектов.

При реализации программы используются практически все методы организации учебнопознавательнойдеятельности, классифицирующиеся по характеру познавательной деятельности обучающихся (объяснительно- иллюстративный, репродуктивный, метод проблемного изложения, частично- поисковый), по источникам знаний (словесные, наглядные, практические); по логике раскрытия учебного материала (индуктивные и дедуктивные) и по степени самостоятельности обучающегося.